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HISTORY OF DATA
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The Ishango bone
holds the first evidence
of data collection and
storage.

John Graunt introduces
the concept of data
analysis in 1663.
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Herman Hollerith
designs a machine that
helped complete the US
census in 1890,

[Accessed August 19, 2024], https://365datascience.com/trending/history-of-data/

Fritz Pfleumer invents
the magnetic tape
which later inspired the
invention of floppy disks
and hard disk drives.

Sir Tim Berners Lee
invents the

World Wide Web.




WORLD DATA IN NUMBERS
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[Accessed August 19, 2024], https://www.statista.com/statistics/871513/worldwide-data-created/ 3 /3]



WORLD DATA IN NUMBERS (2
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[Accessed August 19, 2024], https://mwww.visualcapitalist.com/wp-content/uploads/2019/04/data-generated-each-day-wide.html




WORLD DATA IN NUMBERS (3)

Home > Exireme

It Took Half a Ton of Hard Drives to Store the

Black Hole Image Data a
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Katie Bot rrié‘h/','wh’bf-~ 2 'aev
algorithm for the project, and the moment when the
first black hole image was processed

[Accessed August 19, 2024], https://www.extremetech.com/extreme/289423-it-took-half-a-ton-of-hard-drives-to-store-eht-black-hole-image-data 5 /3]
https://science.nasa.gov/resource/first-image-of-a-black-hole/



WORLD DATA IN NUMBERS (5

[Accessed August 19, 2024], https://azure.microsoft.com/en-us/blog/the-anatomy-of-a-datacenter-how-microsofts-datacenter-hardware-powers-the-microsoft-cloud/ 6 /3
https:/news.microsoft.com/europe/2021/11/16/microsoft-opens-its-sustainable-datacenter-region-in-sweden-creating-new-opportunities-for-a-cloud-first-sweden/



WORLD DATA IN NUMBERS (b
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[Accessed August 19, 2024], https://dryield.com/using-predictive-data-analytics-in-manufacturing/ 8 /3



ENERGY & SCIENCE

Humans learn to use more energy ...

9 /3]



ENERGY LANDSCAPE: HOW LONG?

Such a growth is not sustainable and cannot last forever ...
27

Global fossil fuel consumption Our Worl

Global primary energy consumption by fossil fuel source, measured in terawatt-hours (TWh).
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OurWorldInData.org/fossil-fuels/ e« CC BY

https://ourworldindata.org/energy-mix 10 /31
https://www.explainingthefuture.com/peak_oil.htm|



[Accessed August 19, 2024], https://www.linkedin.com/pulse/exploring-interdependency-data-governance-management-science-garg-6i85e/ 1 /31



Maths &

Statistics
DATA Visualization

SCIENCE EDA

[Accessed August 20, 2024], https://www.javatpoint.com/data-science-vs-machine-learning 12 /31



WHAT IS A DATA SCIENCE?

Data science combines math and statistics, specialised programming,
advanced analytics, artificial intelligence (Al), and machine learning with
specific subject matter expertise to uncover actionable insights hidden in an

organisation’'s data.

These insights can be used to guide decision making and strategic planning.
by IBM

https://www.ibm.com/topics/data-science
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2022/07/is-data-scientist-still-the-sexiest-job-of-the-2Ist-century
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Data science combines math and statistics, specialised programming,
advanced analytics, artificial intelligence (Al), and machine learning with
specific subject matter expertise to uncover actionable insights hidden in an

organisation’'s data.

These insights can be used to guide decision making and strategic planning.
by IBM

Data Scientist: The Sexiest
Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured
data. by Thomas H. Davenport and DJ Patil

From the Magazine (October 2012)

https://www.ibm.com/topics/data-science
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BUSINESS UNDERSTANDING

DATA VISUALISATION DATA COLLECTION

DATA SCIENCE
LIFECYCLE

06

MODELLING

05

DATA CLEANING

04

DATA EXPLORATION

FEATURE ENGINEERING

Adopted from https://nearlearn.com/blog/machine-learning-data-science-life-cycle-whats-the-difference/ 14 /31



ENERGY INFORMATICS

“Energy Informatics”
oy W. C. Booth, G. G. Colomb, J. M. Williams, J. Biz,
W. T. Fitzgerald, University of Chicago Press, Fourth
edition, October 18, 2016

“‘According to Darwin, fire (a form of energy) and language (an
Information system) are the two most important human inventions.”
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ENERGY INFORMATICS

“Energy Informatics”
oy W. C. Booth, G. G. Colomb, J. M. Williams, J. Biz,
W. T. Fitzgerald, University of Chicago Press, Fourth
edition, October 18, 2016

“‘According to Darwin, fire (a form of energy) and language (an
Information system) are the two most important human inventions.”

Fundamental principle:

Energy + Information < Energy

15 / 31



FUSION OF ENERGY AND [T

APPLICATION GOAL TECHNOLOGY
Energy (application areas): IT (enabling technologies):
v Buildings v Internet of Things
v Cities v Digitalisation
v Industries v Machine learning
v Crid v Artificial Intelligence

v Transportation \’Eﬂergyefﬁcieﬂcy /J Blockchain

v Factories » Predictive maintenance v Cloud computing
v Big data
v Data analysis

» Renewable energy

v Agriculture

INntegration

> Environmental impact
assessment ~———— T ——

» Consumer engagement DATA!

16 / 31



Centre of Excellence
in Energy Efficiency

CoE in Energy Efficiency (ENER)

Data driven
control and Al

Energy efficient
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Practice-oriented
Research



APPS: FORECASTING DEMAND
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M. Sinimaa, M. Spichakova, J. Belikov, and E. Petlenkov. Feature engineering of weather data for short-term energy consumption forecast./EEE Madrid PowerTech,

June 28th - July 2nd, 2021, Madrid, Spain.
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APPS (2): NONINTRUSIVE LOAD MONITORING

Non-Intrusive Load Monitoring (NILM) technigues estimate the consumption of
iIndividual appliances in a household, based on readings of a centralised meter.

~

Meter measure power

(input) \

R. Machley, J. Belikov, Y. Beck, Y. Levron. MO-NILM: A multi-objective evolutionary algorithm for NILM classification. Energy and Buildings, 199, 134-144, 2019.
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/ Background noise
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APPS (3): DT & INTELLIGENT ENERGY SERVICES
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A. E. Onile, J. Belikov, Y. Levron, and E. Petlenkov. Energy efficient behavior modelling for demand side recommender system in solar microgrid applications using 21 /31
multi-agent reinforcement learning model. Sustainable Cities and Society, 90, 104392.



FORBES > SMALL BUSINESS

Confronting Commercial Real
Estate’s Biggest Challenges
With Technology

Jeri Frank Former Forbes Councils Member
Forbes Business Council COUNCIL POST | Membership (Fee-Based)

Aug 4, 2022, 09:00am EDT
——tcttetmmmeeESEETT

e ——

Climate Change And The Impact On Technology

First, let’s talk about climate technology and how it is affecting the real
estate industry. Nearly half of all greenhouse gas emissions are
generated from real estate. Approximately 27% of annual CO2 emissions
come from building operations and another 20% come from building
materials, construction and other construction-related causes. Concrete,
steel and aluminum for new construction are particularly large
contributors to carbon emissions. Existing buildings are contributing to
the climate crisis due to a lack of energy efficiency. Even though
upgrades are available, many real estate developers and owners are slow

to embrace sustainable solutions.
e ———

—————theAs SRS

This is shown for the year 2016 — global greenhouse gas emissions were 49.4 billion tonnes CO,eq.

Global greenhouse gas emissions by sector

Agriculture,
Forestry &
| and Use

: e
in Agricultur
Enefg\/& Eiehing (1.7%)

OurWorldinData.org - Research and data to make progress against the world’s largest problems.
Source: Climate Watch, the World Resources Institute (2020).

(5NN

[Accessed March 28, 2024], https://www.forbes.com/sites/forbesbusinesscouncil/2022/08/04/confronting-commercial-real-estates-biggest-challenges-with-technology

https://ourworldindata.org/ghg-emissions-by-sector

Our World
in Data

Licensed under CC-BY by the author Hannah Ritchie (2020).
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APPS (5): SMART BUILDINGS
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EX1: Room temperature sensors are static.
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EX2: The ventilation unit always performs at high speed (100%) because of the broken
CO2 sensor which shows too high values.
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Rooms temperatures are not following setpoints.
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Problems:

» Accuracy vs complexity vs transparency
> Amount of data

Hybrid modelling approaches

XAl's future ll\lew v.\:plnliTnl;ility-prvsvl:ving.mmlvlling approaches
M M ‘esearch arens nterpretable leature engineering
Bilding type | Total # of |Controlled Hich /“”“‘““ e ‘ ;
points points
: >
Shopping mall 1 4657 890 = ,_ Post o explainability techniues
- — Q:\'\\ | I:I): r- I )llf:'(t ael‘:i l)i tf :|-] ii‘l i)\l'(l‘li\ m:(( lilll l: lvl S :g ns
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Hotel 7556 1404 z
Office 17380 1636 =
: O
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Low

Low High
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OUTRO

ML model pipeline for the problem of day-ahead solar power generation forecast
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OUTRO

ML model pipeline for the problem of day-ahead solar power generation forecast

28/ 3



OUTRO

ML model pipeline for the problem of day-ahead solar power generation forecast
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INnputs

OUTRO (2): ANN

Embedding

Key

Query

Value

Output
Up-projection
Down-projection

Unembedding

[Accessed April 3, 2024], https://www.youtube.com/watch?v=wjZofIJX0Ov4M

activation
function

12,288 50,257

d embed * n vocab
128 12,288 96 96

d query *d embed * n_heads * n_layers
128 12,288 96 96

d query *d embed * n_heads * n_layers

128 12,288 96 96
d value *d embed * n heads * n_layers
12,288 128 96 96
d embed *d value * n heads * n_layers
49,152 12,288 96
n_ neurons *d embed * n_layers
12,288 19,152 96
d embed * n neurons * n_layers
50.257 12.288

n_vocab * d embed

Total weights:

175,181,291,520
= 617,558,016
14,495,514,624
14,495,514,624
14,495,514,624
14,495,514,624

H7.982.058.496

Matrix notation:
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RESEARCH GROUP

The best results would come from everyone in the group
doing what's for himself and the group.
(c) , A beautiful mind®,

R. Crowe as J. Nash 30 /3



Thank you
for your
! attention!

TECH

Nonlinear Control Systems Group

Fundamental and applied control theory
Research - Mustamae, Harjumaa - 133 followers

$& Vadim works here - 2 employees

( v Following > Visit website & (i More :ﬁ'

https://www.linkedin.com/company/nonlinear-control-systems-group
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